Hardmetals, also known as cemented carbides, have played a huge and often overlooked role in modern industrial development. From the first application in wire drawing dies in the 1920s, hardmetals are today universal and their application areas range from metal cutting and the machining of wood, plastics and composites to the production of glass bottles, aluminium cans and the ubiquitous ball-point pen tip. Can Additive Manufacturing make inroads into a market worth tens of billions of Euros in annual sales? Dr.-Ing. Johannes Pötschke reviews the fundamentals of hardmetal production and considers the most viable AM processes for this complex family of materials. [First published in Metal AM Vol. 6 No. 3, Autumn/Fall 2020]
... Read more »
Whilst Additive Manufacturing is undoubtedly having a huge impact on the design and manufacture of rocket propulsion systems, most notably combustion chambers and nozzles, the Achilles’ heel of most AM processes is as-built surface finish. Whilst in many AM applications surface finish may be largely irrelevant to a component’s function or performance, when it comes to high-cycle fatigue properties, achieving the required level of smoothness is critical to performance. In this article, Justin Michaud, REM Surface Engineering, reports on advancements achieved in this area through a public-private partnership with NASA. [First published in Metal AM Vol. 6 No. 3, Autumn/Fall 2020]
... Read more »
The high cost of metal powders for Additive Manufacturing makes them a primary focus for cost management. Learning how to treat and store such powders in order to maintain and optimise their performance and value is one way to improve production economics. Here, Dr Rajeev Dattani, from Freeman Technology, UK, and Dr Animesh Bose, Desktop Metal, USA, review how to test powders in order to develop this knowledge, and examine treatment and storage regimes that can be beneficial. [First published in Metal AM Vol. 6 No. 1, Spring 2020]
... Read more »
Metal Additive Manufacturing is a complex technology in which users struggle with materials reliability and quality on a daily basis. Here, William Herbert, Director Technology and R&D – Carpenter Additive, a division of Carpenter Technology, looks at how the company combines a 130-year heritage as a leader in speciality alloys with modern, digital solutions for powder management and material traceability, and supports the AM supply chain end-to-end by developing advanced materials, improving process economics and quality, and reducing risk in production applications. [First published in Metal AM Vol. 5 No. 4, Winter 2019]
... Read more »
This is a challenging and exciting time for producers of metal powders. Talk of the industrialisation of Additive Manufacturing is everywhere and key pieces of the AM jigsaw such as standards, quality systems and installed production capacity are falling into place. The nature of the companies which are looking to take advantage of the anticipated feast is, however, surprisingly diverse. In this article, Alex Kingsbury and Dayton Horvarth highlight how long-established metal powder giants are adapting to AM and how agile start-ups are carving out niches in the powder marketplace. [First published in Metal AM Vol. 5 No. 4, Winter 2019]
... Read more »
There is no shortage of Additive Manufacturing machines humming away in research laboratories, producing test pieces and exhibits for trade shows, but the hard truth is that relatively few are making components for serial production. In part, this is because the world is still waiting for materials which enable the technology to fulfil its true potential. In this article, Rebecca Gingell and colleagues from OxMet Technologies, Oxford, UK, explain how the company is approaching the design of novel alloys for AM, and reflect on its progress so far. [First published in Metal AM Vol. 5 No. 4, Winter 2019]
... Read more »
On June 12th, HP Inc. formally opened its new 3D Printing and Digital Manufacturing Center of Excellence at its campus in Barcelona, Spain. Metal AM magazine’s Emily-Jo Hopson attended the event and here reports on the 14,000 m2 facility’s opening and the company’s rapid rise in the world of Additive Manufacturing. She reveals how, whilst the company is not traditionally associated with equipment for industrial manufacturing, many of its core technologies directly lend themselves to a new generation of metal binder jetting systems. [First published in Metal AM Vol. 5 No. 2, Summer 2019]
... Read more »
The broader industrial-scale use of powder bed-based metal Additive Manufacturing is resulting not only in improvements in process performance and material properties, but also in a growing scrutiny of the process by regulators, risk managers and legal departments. One key area of their focus is powder removal, the step in the production chain where there is perhaps the greatest risk to worker and plant safety as a result of dust exposure. Joseph Kowen reviews the current status of this topic and reports on how leading producers are addressing what is often described as the Achilles heel of metal AM [First published in Metal AM Vol. 5 No. 2, Summer 2019]
... Read more »
Sweden’s VBN Components AB has successfully combined the design freedoms offered by Additive Manufacturing with innovative process and material developments to create a new generation of high-strength, carbide-rich tool materials. These unique, patented alloys are transforming tool and wear component performance across a range of applications, from gear cutting hobs to food processing and the mining sector. Isabelle Bodén reports on the company’s development and the unique properties of its products. [First published in Metal AM Vol. 5 No. 2, Summer 2019]
... Read more »
Powder specifications vary significantly across the various metal Additive Manufacturing technologies. As Andrew Klein, Director of R&D at The ExOne Company, and Jamie Clayton, Operations Director at Freeman Technology explain, powders for binder jetting in particular have very specific process-related requirements. In the following article, the two offer their insight into the rapid assessment and qualification process for a new 316L stainless steel powder. [First published in Metal AM Vol. 5 No. 2, Summer 2019]
... Read more »