The Additive Manufacturing industry is in a state of continual evolution. As one group of processes moves towards widespread adoption, others are being introduced and refined. In such a dynamic environment, how do we define AM, and what does ‘good’ AM look like? This article considers the status quo of conventional manufacturing before comparing key AM processes. Steven Camilleri, Andrew Duguid, Sam Katz and Chris Massar (SPEE3D), Martin McMahon (MAM Solutions), Victor Champagne (US Army Research Laboratory), Ozan Özdemir (Northeastern University), Anthony Naccarelli and Timothy Eden (Penn State), Krishnan Kannoorpatti (Charles Darwin University) and Bruce McLean (University of Sydney) unravel AM’s value metrics.
... Read more »
A technical session at the World PM2022 Congress & Exhibition, organised by the European Powder Metallurgy Association (EPMA) and held in Lyon, France, October 9-13, 2022, focused on the corrosion and wear resistance of materials processed using beam-based Additive Manufacturing. This session comprised three papers which looked at ways to improve these properties – both particular pain points for AM’s wider adoption – by way of chemical-mechanical surface polishing, adjusted laser power, and the development of new, wear-resistant alloys for AM. Dr David Whittaker reviews the presented papers.
... Read more »
When NanoAL, LLC, a company with a decade of aluminium alloy development experience, decided to speed up its development of alloys for AM, it turned to SLM Solutions’ SLM®125 PBF-LB machine. As NanoAL’s Matthew Simmers explains, the company needed a workhorse machine that fulfilled a number of requirements, from open parameters and material flexibility to specifications and build quality that closely mirrored larger, production-focused machines. This article explores machine choice, installation, and operation in supporting NanoAL’s Rapid Alloy Screening (RAS) process.
... Read more »
Alloy development has evolved dramatically throughout history, from what was a game of ‘trial and error’ to a systematic approach driven by Design of Experiments and specialist software. Now, the adoption of Integrated Computational Materials Engineering (ICME) is once again changing the way new materials are developed and deployed in today’s advanced manufacturing technologies. QuesTek’s Keith Fritz, Director of Solutions Architecture, details how the company’s ICMD® platform is enabling faster, cheaper and more successful development of new alloys for metal Additive Manufacturing, as well as the build parameters to process them.
... Read more »
The use of metal AM is ramping up, and so, as a result, is the demand for metal powders. However, the variety of materials available remains relatively small. This is due, among other things, to the exacting requirements for the powders used, and the method of production. In addition, the production of smaller quantities of powder can be uneconomical. In a project funded by the AiF, the IWM at Germany’s RWTH Aachen University and Fraunhofer IFAM have developed a sustainable ‘powder kit’ for the individual and robust production of metal powder mixtures with subsequent alloying during PBF-LB processing. The partners share their progress.
... Read more »
Additive Manufacturing processes offer a high degree of design freedom. The Laser Beam Powder Bed Fusion of metals (PBF-LB/M), in particular, has established itself for series applications of complex-shaped parts in numerous industries. In this article, Prof Dr-Ing Christian Seidel considers the next major step in PBF-LB, which could offer designers unknown potential: the production of sensor-integrated AM parts. Methods and solutions for the manufacturing of sensor-integrated AM parts are presented and industry-relevant case studies showcased, illustrating the potential offered by sensor-integrated ‘smart parts.’
... Read more »
While most people associate the advantages of AM with small- to medium-sized, complex parts, wire-based Directed Energy Deposition (DED) makes it possible to achieve geometric complexity on a huge scale. Although the adoption rate for wire-based DED does not come close to that of the more widely known metal AM processes, this unique technology has advanced dramatically over recent years, and promises major advantages in a volatile global manufacturing landscape. Dr Filomeno Martina, CEO and co-founder of WAAM3D, explains more.
... Read more »
As Additive Manufacturing sees growing use in a broader range of industries, researchers have been increasingly focused on expanding the types of material that can be processed via this technology, including the challenging field of refractory metals and hard materials. The AM research featured in the programme of the recently held Plansee Seminar represents the cutting edge of what is possible with these materials using the most advanced manufacturing processes. Here, Bernard North collates the seminar’s takeaways on the suitability of these materials for direct Additive Manufacturing processes. [First published in Metal AM Vol. 8 No. 3, Autumn 2022]
... Read more »
Many in the Additive Manufacturing industry have spoken on the importance of taking a holistic view of the workflow, from powder production to part finishing. Viewing the workflow in this way enables a systems engineering approach, joining the complex machines and processes involved in AM together. But what if we were able to combine steps from across the AM workflow? What cost, time and safety improvements might that enable? John Barnes presents his DirectPowder™ process, developed in partnership with Christopher Aldridge. [First published in Metal AM Vol. 8 No. 3, Autumn 2022]
... Read more »
As product developers become more and more aware of the possibilities of metal Additive Manufacturing and the design freedom it offers, metal Laser Beam Powder Bed Fusion (PBF-LB/M) has established itself for series applications in numerous industries. One novel capability of PBF-LB/M which has yet to be fully explored is the production of multi-material metal parts, which would offer huge new potential for designers in many industries. Prof Dr-Ing Christian Seidel looks at methods and solutions for the AM of parts consisting of two arbitrarily distributed metal alloys and presents use cases with the potential for series production by multi-material PBF-LB/M in the near future. [First published in Metal AM Vol. 8 No. 2, Summer 2022]
... Read more »
The metal Additive Manufacturing landscape is filled with ambitious, well-funded startups, all promising a wealth of materials innovation and ambitious value propositions. In contrast to these newcomers, Höganäs AB has been a powerful force in the metal powder market for near eighty years, producing half a million tonnes of metal powder annually. Is there a role for such a titan of Powder Metallurgy in the brave new world of AM? Emily-Jo Hopson-VandenBos spoke to Kennet Almkvist, president, Höganäs Customization Technologies, about what the company brings to the table. [First published in Metal AM Vol. 8 No. 1, Spring 2022]
... Read more »
A technical session in the programme of the virtual Euro PM2021 conference, organised by the European Powder Metallurgy Association (EPMA) and held October 18-22, 2021, focused on issues related to the processing of nickel-base alloys and refractory metals by Laser Beam Powder Bed Fusion (PBF-LB) Additive Manufacturing. Dr David Whittaker reviews four papers that address microstructure control, lattice optimisation and chemical post-processing parameters for IN718, and the AM of molybdenum. [First published in Metal AM Vol. 8 No. 1, Spring 2022]
... Read more »
Join our community