Study explores development of meta-crystals by Additive Manufacturing

January 17, 2019

Study explores development of meta-crystals by Additive Manufacturing

Schematic of polygrain structures (left), and a demonstration artefact showing varying orientations of meso-structures (right) (Courtesy University of Sheffield)

 

The Department of Materials Science and Engineering at the University of Sheffield, South Yorkshire, UK, in collaboration with Imperial College London, is investigating ways in which the use of lattice structures to replace solid materials in metal Additive Manufacturing can replicate the structure of a metallic single crystal, and the limitations this structure can impose on part performance.

Professor Iain Todd, Professor of Metallurgy at the University of Sheffield, reports that the lattice structures used in AM typically have a uniform layout, with nodes all conforming to a regular array with the struts between the nodes all following common planes: and herein lies the problem. In the study published in Nature magazine in January 2019, he states that the nodes in the AM lattice are equivalent to the atoms in the single crystal and the struts equivalent to the atomic bonds. In each of these structures, the atomic planes, or nodes, are perfectly aligned.

While in some applications, such as the high temperature end of a jet engine, single crystal materials are ideal because of their ability to withstand deformation at extreme temperatures, the structures have limitations relating to their mechanical performance. This limitation is also observed in AM parts with a uniform lattice structure: when the structure is put into compression, once the force is sufficient to cause permanent deformation, the lattice shears along one or more of the planes of nodes. With nothing to inhibit this shearing, the collapse becomes catastrophic.

In polycrystalline materials – those with many crystals – the alignment of the atomic planes is random, so when a shear force is applied in a particular direction, a crack will slow down or stop when it meets a crystal where the atoms are aligned differently from the crystal in which the crack initiated. Moreover, it is possible to introduce different materials in the form of phases, precipitates or inclusions used to strengthen the materials; these materials can also help to inhibit crack propagation.

This fundamental metallurgical understanding has inspired scientists at the University of Sheffield and Imperial College London and to mimic polycrystalline microstructures instead of single crystal structures in AM lattices, with the aim of developing robust, damage-tolerant architected materials.

Through the computer modelling of atomic structures, which are then scaled up to create meso-structures based on polycrystalline materials, the engineers believe they could transform the way that materials are designed, and have coined the name ‘meta-crystals’ for this new method.

Experimental testing of components made from these meta-crystals has reportedly demonstrated that they are highly energy absorbant, with the polycrystal-like material able to withstand almost seven times the energy before failure than the materials that mimic the single-crystal structure. While  basic metallurgical concepts are being used to inspire the development of architected materials, researchers are using the creation of architected materials as an alternative approach to study complex metallurgical phenomena.

“This approach to materials development has potentially far-reaching implications for the Additive Manufacturing sector,” stated Prof Todd. “The fusion of physical metallurgy with architected meta-materials will allow engineers to create damage-tolerant architected materials with desired strength and toughness, while also improving the performance of architected materials in response to external loads. And while these materials can be used as standalone structures, they can also be infiltrated with other materials in order to create composites for a wide variety of applications.”

Dr Minh-Son Pham, Imperial College London, added, “This meta-crystal approach could be combined with recent advances in multi-material 3D printing to open up a new frontier of research in developing new advanced materials that are lightweight and mechanically robust, with the potential to advance future low carbon technologies.”

www.sheffield.ac.uk/materials

www.imperial.ac.uk

Download the latest issue of Metal AM magazine

Our latest issue is now available to view online or download in PDF format.

As well as an extensive AM industry news section, this 164-page issue includes articles and reports on:

  • Binder Jet metal Additive Manufacturing: Process chain considerations when moving towards series production
  • Simple and standardised X-ray CT testing in metal Additive Manufacturing
  • Formnext 2018: The global AM industry addresses ‘the bigger picture’ for true industrialisation
  • Formnext 2018: International forum reviews standards for Additive Manufacturing
  • Formnext 2018: How the growth of metal AM is driving changes to the metal powder landscape
  • How residual stress can cause major build failures, and what you can do to prevent it
  • Arcast: Applying advanced melting and atomisation expertise to the production of a new generation of metal powders
  • Additive Manufacturing in Aerospace: Highlights from the AMA 2018 international conference in Bremen
  • Euro PM2018: The influence of powder characteristics on processability in metal Additive Manufacturing
  • > More information

Latest news

    E-newsletter

    Sign up to our e-newsletter, sent weekly to AM professionals and end-users around the world. We'll also let you know each time a new issue of Metal AM magazine is available.

    Discover our magazine archive…

    The free to access Metal Additive Manufacturing magazine archive offers unparalleled insight into the world of metal Additive Manufacturing from a commercial and technological perspective through:
    • Reports on visits to leading metal AM part manufacturers and industry suppliers
    • Articles on technology and application trends
    • Information on materials developments
    • Reviews of key technical presentations from the international conference circuit
    • International industry news
    All past issues are available to download in PDF format, in either single page format or as double-page “spreads” for viewing on large monitors. All downloads are free of charge. Go to archive...

    Connect with us

    Visit our social media channels and sign up to our e-newsletter