Research collaboration to explore Additive Manufacturing for aerospace repairs

News
May 11, 2016

May 11, 2016

Research collaboration to explore Additive Manufacturing for aerospace repairs

A new research collaboration between Canada and Europe is looking to Additive Manufacturing technology to repair components for the aerospace industry. The AMOS consortium, consisting of nine partners from Canada, France, Sweden and the UK, will look at direct energy deposition techniques that combine laser or arc welding tools with automated or robotic control to accurately deposit and melt metal powder or wire.

Many of these techniques are already used in aerospace and other industries to build new parts to near-net shape. AMOS will investigate their use to repair and remanufacture aerospace components such as turbine blades and landing gear. It was stated that this could significantly reduce the time and cost of regular maintenance and repair for the aerospace industry, while reducing material waste and extending the life of expensive components.

“There’s a host of Additive Manufacturing technologies available to aerospace manufacturers, but they tend to be focused on new production rather than repairing damaged parts,” stated Dr Rosemary Gault, European Project Coordinator at the University of Sheffield AMRC. “The AMOS project is bringing together some of the world’s leading research organisations and companies to identify which additive technologies are best suited for repair and remanufacture, and develop them for commercial use.”

Included in the AMOS consortium are research organisations, top-tier aerospace manufacturers and specialist technology developers.

“The research team is well balanced, consisting of industrial OEMs, repair providers and universities across the Atlantic,” added Professor Yaoyao Fiona Zhao of McGill University’s Additive Design and Manufacturing Lab. “The project will provide a fundamental understanding of thermal and mechanical behaviour of powder and wire material during deposition. It will also provide a simulation and optimisation platform for industrial partners to further develop their component-specific applications.”

The project will research fundamental aspects of selected additive processes, including the material integrity of deposited metal, and the accuracy and limitations of the deposition process. The consortium will also investigate automated techniques to map damaged areas and calculate repair strategies, and look at how the near-net shape repairs can be effectively machined to a final seamless shape.

AMOS will also investigate how additive repair techniques can be factored into the design of new components to optimise efficiency over their life cycle, and the qualification of innovative repair processes which don’t comply with current industry specifications.

“Additive Manufacturing is a revolutionary technology, and one of GKN’s strategic priority technologies,” stated Rebecka Brommesson, Solid Mechanics Engineer at GKN Aerospace Engine Systems. “The large comparative study carried out in AMOS will help us understand the pros and cons of the tested direct energy deposition systems. We want to investigate suitable repair and remanufacturing strategies as well as the qualification process required for repair and remanufacturing.”

The European partners are the University of Sheffield AMRC in the UK; Ecole Central de Nantes in France; GKN Aerospace Engine Systems, based in Sweden; and DPS, a French SME specialising in process simulation and optimisation.

Canadian partners are McGill University, Montreal; the University of Ottawa; jet engine manufacturer Pratt & Whitney Canada; landing gear supplier Héroux-Devtek; and automated welding specialist Liburdi.

The project will involve a range of Additive Manufacturing technologies used at the participating centres and companies, including laser powder and robotic laser wire systems operated by Liburdi in Canada, a CNC laser powder facility at Ecole Centrale de Nantes in France, and robotic powder diode laser and wire-feed gas tungsten arc facilities at the University of Sheffield AMRC in the UK. Material research will focus on three widely used aerospace alloys: Ti6Al4V, Inconel 718, and 300M alloy steel.

The four-year, €2.6 million (C$3.8 million) project is supported by the European Commission through the Horizon 2020 programme and by Canadian funding agencies CARIC and NSERC. It is one of the first European-Canadian projects to be funded under the ‘Mobility for growth’ collaboration in aeronautics R&D.

http://amos-project.com/amos

News
May 11, 2016

About Metal Additive Manufacturing magazine

Metal AM magazine, published quarterly in digital and print formats, is read by a rapidly expanding international audience.

Our audience includes component manufacturers, end-users, materials and equipment suppliers, analysts, researchers and more.

In addition to providing extensive industry news coverage, Metal AM magazine is known for exclusive, in-depth articles and technical reports.

Our focus is the entire metal AM process from design to application.

Each issue is available as an easy-to-navigate digital edition and a high-quality print publication.

In the latest issue of Metal AM magazine

Download PDF
 

Extensive AM industry news coverage, as well as the following exclusive deep-dive articles:

  • Fly-by-wire: How Additive Manufacturing took to the skies with Norsk Titanium
  • Dynamic beam shaping: Unlocking productivity for cost-effective Laser Beam Powder Bed Fusion
  • Enabling the fusion energy revolution: Mastering tungsten with PBF-EB Additive Manufacturing
  • Patents and Additive Manufacturing: What insights can mining PBF-EB data reveal about the industry and the technology?
  • Additive Manufacturing for Semiconductor Capital Equipment: Unlocking critical supply chains
  • Can Additive Manufacturing lower the carbon footprint of parts for the energy and maritime industries?
  • Inspect Additive Manufacturing, stop monitoring: Phase3D’s unit-based, in-process inspection solution for powder bed AM

The world of metal AM to your inbox

Don't miss any new issue of Metal AM magazine, and get the latest industry news. Sign up to our twice weekly newsletter.

Sign up

Looking for AM machines, metal powders or part manufacturing services?

Discover suppliers of these and more in our comprehensive advertisers’ index and buyer’s guide, available in the back of Metal AM magazine.

  • AM machines
  • Process monitoring & calibration
  • Heat treatment & sintering
  • HIP systems & services
  • Pre- & post-processing technology
  • Powders, powder production and analysis
  • Part manufacturers
  • Consulting, training & market data
View online

Discover our magazine archive…

The free to access Metal Additive Manufacturing magazine archive offers unparalleled insight into the world of metal Additive Manufacturing from a commercial and technological perspective through:

  • Reports on visits to leading metal AM part manufacturers and industry suppliers
  • Articles on technology and application trends
  • Information on materials developments
  • Reviews of key technical presentations from the international conference circuit
  • International industry news

All past issues are available to download as free PDFs or view in your browser.

Browse the archive

Share via
Copy link
Powered by Social Snap