Metal additively manufactured bone drill with integrated cooling channels improves surgical processes

July 10, 2017

Metal additively manufactured surgical bone drill with integrated cooling channels

The internally cooled bone drill (Courtesy toolcraft)

 

In collaboration with toolcraft, Germany, The Institute of Production Engineering and Machine Tools (IFW) at Leibniz University, Hannover, Germany, has produced a new bone drill using metal Additive Manufacturing. The new drill is designed to address the problem of thermal-induced osteonecrosis in traditional bone drilling surgeries.

Thermal-induced osteonecrosis is caused by the heat produced when cutting bone using traditional bone drills. Osteonecrosis develops when blood flow is restricted to the bones in the joints. With too little blood, the bone starts to die and may break down. Cooling conventional tools during use runs the risk of fluid entering the wound, which can negatively impact patient outcomes. As a result, bone surgery is currently performed iteratively, with the drilling process being repeatedly interrupted in order to cool the tool and keep the temperature as low as possible.

Using metal AM, toolcraft and IFW have manufactured a bone drill with integrated cooling ducts. This allows coolant to flow inside the tool, along the helix of the drill and back to the tool holder, without the risk of fluid entering the wound. toolcraft also developed a non-rotating pre-spindle attachment with an inflow and outflow function for the coolant, a continuous supply of which is guaranteed by an attached coolant tank and pump.

 

Developing a new solution

Metal additively manufactured surgical bone drill with integrated cooling channels

Consistent cooling system inside the bone drill (Courtesy toolcraft)

 

The prototype for the new bone drill was modelled on a conventional bone drill with a 6mm diameter bit. According to IFW, it was important to keep the design as close to a conventional bone drill as possible so that surgeons would not be required to undergo extensive retraining to use it.

At the outset of the project, the required cooling capacity was determined in terms of the volumetric flow rate, temperature and thermal capacity of the coolant. toolcraft’s project team then developed a method for bringing a closed cooling circuit into the tool substrate while maintaining tool stability, and ensuring that the tool was suitable for performing the required processes and highly compatible with patients.

The shape of the drill and its internal cooling ducts were designed by Schmidt WFT using CAD and simulation software. The drill was then additively manufactured from biocompatible material 1.4404 and machined to its final size. Following manufacture, it underwent extensive practical tests at IFW; using water as a coolant, the university team tested the drill on both artificial and bovine bone while measuring the process temperature.

The results of the drilling tests showed a significant temperature reduction of around 70%. This is a key development for bone surgery of all kinds; all forms of bone cutting and sawing carry a risk of thermal-induced osteonecrosis. Following the successful development of toolcraft’s internally cooled bone drill, the technology could also be used to develop a range of bone saws and other surgical implements.

www.toolcraft.de

www.ifw.uni-hannover.de/das-ifw.html

Download the latest issue of Metal AM magazine

Our latest issue is now available to view online or download in PDF format.

As well as an extensive AM industry news section, this 164-page issue includes articles and reports on:

  • Binder Jet metal Additive Manufacturing: Process chain considerations when moving towards series production
  • Simple and standardised X-ray CT testing in metal Additive Manufacturing
  • Formnext 2018: The global AM industry addresses ‘the bigger picture’ for true industrialisation
  • Formnext 2018: International forum reviews standards for Additive Manufacturing
  • Formnext 2018: How the growth of metal AM is driving changes to the metal powder landscape
  • How residual stress can cause major build failures, and what you can do to prevent it
  • Arcast: Applying advanced melting and atomisation expertise to the production of a new generation of metal powders
  • Additive Manufacturing in Aerospace: Highlights from the AMA 2018 international conference in Bremen
  • Euro PM2018: The influence of powder characteristics on processability in metal Additive Manufacturing
  • > More information

Latest news

    E-newsletter

    Sign up to our e-newsletter, sent weekly to AM professionals and end-users around the world. We'll also let you know each time a new issue of Metal AM magazine is available.

    Discover our magazine archive…

    The free to access Metal Additive Manufacturing magazine archive offers unparalleled insight into the world of metal Additive Manufacturing from a commercial and technological perspective through:
    • Reports on visits to leading metal AM part manufacturers and industry suppliers
    • Articles on technology and application trends
    • Information on materials developments
    • Reviews of key technical presentations from the international conference circuit
    • International industry news
    All past issues are available to download in PDF format, in either single page format or as double-page “spreads” for viewing on large monitors. All downloads are free of charge. Go to archive...

    Connect with us

    Visit our social media channels and sign up to our e-newsletter