Additive manufactured permanent magnets from Oak Ridge said to outperform conventional versions

News
November 8, 2016

November 8, 2016

AM permanent magnets from Oak Ridge said to outperform conventional versions

This isotropic, neodymium-iron-boron bonded permanent magnet was 3D-printed at DOE’s Manufacturing Demonstration Facility at Oak Ridge National Laboratory

Researchers at the US Department of Energy’s (DOE) Oak Ridge National Laboratory, Tennessee, USA, have demonstrated that permanent magnets produced by Additive Manufacturing can outperform bonded magnets made using traditional techniques while conserving critical materials.

Scientists fabricated isotropic, near-net-shape, neodymium-iron-boron (NdFeB) bonded magnets at DOE’s Manufacturing Demonstration Facility at ORNL using a Big Area Additive Manufacturing (BAAM) machine. The result, published in Scientific Reports, was a product with comparable or better magnetic, mechanical and microstructural properties than bonded magnets made using traditional injection moulding with the same composition.

The Additive Manufacturing process began with composite pellets consisting of 65%vol isotropic NdFeB powder and 35% polyamide (Nylon-12) manufactured by Magnet Applications, Inc. The pellets were melted, compounded, and extruded layer-by-layer by BAAM into desired forms.

“While conventional sintered magnet manufacturing may result in material waste of as much as 30 to 50%, Additive Manufacturing will simply capture and reuse those materials with nearly zero waste,” stated Parans Paranthaman, principal investigator and a group leader in ORNL’s Chemical Sciences Division. The project was funded by DOE’s Critical Materials Institute (CMI).

Using a process that conserves material is especially important in the manufacture of permanent magnets made with neodymium, dysprosium – rare earth elements that are mined and separated outside the United States. NdFeB magnets are the most powerful on earth and used in everything from computer hard drives and head phones to clean energy technologies such as electric vehicles and wind turbines.

AM permanent magnets from Oak Ridge said to outperform conventional versions

Composite pellets are melted, compounded, and extruded layer-by-layer into desired forms

“The printing process not only conserves materials but also produces complex shapes, requires no tooling and is faster than traditional injection methods, potentially resulting in a much more economic manufacturing process,” added Paranthaman.

“Manufacturing is changing rapidly, and a customer may need 50 different designs for the magnets they want to use,” stated ORNL researcher and co-author Ling Li. Traditional injection moulding would require the expense of creating a new mould and tooling for each, but with Additive Manufacturing the forms can be crafted simply and quickly using computer-assisted design, she explained.

Future work will explore the printing of anisotropic, or directional, bonded magnets, which are stronger than isotropic magnets that have no preferred magnetization direction. Researchers will also examine the effect of binder type, the loading fraction of magnetic powder, and processing temperature on the magnetic and mechanical properties of printed magnets.

Alex King, Director of the Critical Materials Institute, thinks that this research has tremendous potential.  “The ability to print high-strength magnets in complex shapes is a game changer for the design of efficient electric motors and generators,” he said.  “It removes many of the restrictions imposed by today’s manufacturing methods.”

“This work has demonstrated the potential of additive manufacturing to be applied to the fabrication of a wide range of magnetic materials and assemblies,” stated co-author John Ormerod. “Magnet Applications and many of our customers are excited to explore the commercial impact of this technology in the near future.”

Contributing to the project were Ling Li, Angelica Tirado, Orlando Rios, Brian Post, Vlastimil Kunc, R. R. Lowden, Edgar Lara-Curzio at ORNL, as well as researchers I. C. Nlebedim and Thomas Lograsso working with CMI at Ames Laboratory. Robert Fredette and John Ormerod from Magnet Applications Inc. (MAI) contributed to the project through an MDF technology collaboration. The DOE’s Advanced Manufacturing Office provides support for ORNL’s Manufacturing Demonstration Facility, a public-private partnership to engage industry with national labs.

The article is available to view on the Nature website at: http://www.nature.com/articles/srep36212.

www.ornl.gov

News
November 8, 2016

About Metal Additive Manufacturing magazine

Metal AM magazine, published quarterly in digital and print formats, is read by a rapidly expanding international audience.

Our audience includes component manufacturers, end-users, materials and equipment suppliers, analysts, researchers and more.

In addition to providing extensive industry news coverage, Metal AM magazine is known for exclusive, in-depth articles and technical reports.

Our focus is the entire metal AM process from design to application.

Each issue is available as an easy-to-navigate digital edition and a high-quality print publication.

In the latest issue of Metal AM magazine

Download PDF
 

Extensive AM industry news coverage, as well as the following exclusive deep-dive articles:

  • BMW Group: Laying the foundations for the application of metal Additive Manufacturing in the automotive industry
  • Predicting the metal Additive Manufacturing market – and breaking the hype cycle
  • China’s thriving metal Additive Manufacturing industry: An outsider’s perspective
  • Enhancing the productivity of Additive Manufacturing facilities through PBF-LB automation
  • Award-winning metal AM parts from the MPIF’s 2024 Design Excellence Awards
  • Performance of eddy currents for the in-situ detection of defects during PBF-LB metal AM

The world of metal AM to your inbox

Don't miss any new issue of Metal AM magazine, and get the latest industry news. Sign up to our twice weekly newsletter.

Sign up

Looking for AM machines, metal powders or part manufacturing services?

Discover suppliers of these and more in our comprehensive advertisers’ index and buyer’s guide, available in the back of Metal AM magazine.

  • AM machines
  • Process monitoring & calibration
  • Heat treatment & sintering
  • HIP systems & services
  • Pre- & post-processing technology
  • Powders, powder production and analysis
  • Part manufacturers
  • Consulting, training & market data
View online

Discover our magazine archive…

The free to access Metal Additive Manufacturing magazine archive offers unparalleled insight into the world of metal Additive Manufacturing from a commercial and technological perspective through:

  • Reports on visits to leading metal AM part manufacturers and industry suppliers
  • Articles on technology and application trends
  • Information on materials developments
  • Reviews of key technical presentations from the international conference circuit
  • International industry news

All past issues are available to download as free PDFs or view in your browser.

Browse the archive

Share via
Copy link
Powered by Social Snap