Researchers show AM superalloy kills COVID-19 in thirty minutes

December 3, 2021

The research team used Laser Beam Powder Bed Fusion to manufacture the COVID-19-killing superalloy (Courtesy Arjunan, Robinson, Baroutaji, Tuñón-Molina, Martí, and Serrano-Aroca, “3D Printed Cobalt-Chromium-Molybdenum Porous Superalloy with Superior Antiviral Activity”)

Researchers from the University of Wolverhampton and the Spanish Catholic University of Valencia’s Biomaterials and Bioengineering Lab, have published a paper, ‘3D Printed Cobalt-Chromium-Molybdenum Porous Superalloy with Superior Antiviral Activity,’ in the International Journal of Molecular Sciences.

An update to a July 2021 paper that discussed the Cu-W-Ag material’s ability to kill the coronavirus-causing SARS-CoV-2 virus within five hours, the latest journal article shows further research into additively manufacturable materials said to kill the virus within as few as thirty minutes.

The project – led by Dr Arun Arjunan, John Robinson, and Dr Ahmad Baroutaji of the University of Wolverhampton and supported by Ángel Serrano-Aroca, Alberto Tuñón-Molina and Ángel Serrano-Aroca of the Spanish Catholic University – assessed the antiviral performance of AM materials that could offer the potential for preventative virus transmission and on-demand manufacturing.

“Virus transmission can be direct (human-to-humans) or indirect (airborne and/or contaminated surfaces) including respiratory droplets and therefore face masks have been reintroduced and again have become mandatory in many community settings,” stated Dr Arjunan.

“As airborne droplets below five microns can contain infectious SARS-CoV-2 and can remain suspended in the air for three hours masks do offer some protection from the transmission,” he continued. “However, surfaces on the other hand can sustain infectious viruses from a few hours to nine days depending on the surface material and morphology. For example, stainless steel that is widely found in hospitals and medical settings can sustain SARS-CoV-2 survival for seven days. Therefore, with the emergence of potential vaccine evasive variants antiviral materials that inactivate the virus offer much potential for transmission prevention.”

The interdisciplinary team used Laser Beam Powder Bed Fusion (PBF-LB) AM to manufacture a novel microporous architecture and assess the anti-viral performance of Cobalt-Chromium-Molybdenum (Co-Cr-Mo), already an alloy in common use in industrial AM settings for medical and aerospace applications.

Lead researcher John Robinson stated, “The Co-Cr-Mo material was shown to have potent antiviral activity displaying a significant improvement on copper and silver alloys which are well known for their antimicrobial properties. To our knowledge, we are the first to assess the anti-SARS-CoV-2 efficacy of Co-Cr-Mo which displayed 100% viral inactivation in thirty minutes. Therefore, our latest publication proves [PBF-LB] and Co-Cr-Mo could be adopted for antiviral mask filters and heating, ventilation, and air conditioning filtration systems for healthcare and general community settings. Additionally, Co-Cr-Mo could be used for door handles or other touchpoints where high potential for virus transmission could be reduced or eliminated.”

The peer-reviewed paper is available in full here.

www.wlv.ac.uk

www.ucv.es

About Metal Additive Manufacturing magazine

Metal AM magazine, published quarterly in digital and print formats, is read by a rapidly expanding international audience.

Our audience includes component manufacturers, end-users, materials and equipment suppliers, analysts, researchers and more.

In addition to providing extensive industry news coverage, Metal AM magazine is known for exclusive, in-depth articles and technical reports.

Our focus is the entire metal AM process from design to application.

Each issue is available as an easy-to-navigate digital edition and a high-quality print publication.

In the latest issue of Metal AM magazine

Download PDF
 

Extensive AM industry news coverage, as well as the following exclusive deep-dive articles:

  • BMW Group: Laying the foundations for the application of metal Additive Manufacturing in the automotive industry
  • Predicting the metal Additive Manufacturing market – and breaking the hype cycle
  • China’s thriving metal Additive Manufacturing industry: An outsider’s perspective
  • Enhancing the productivity of Additive Manufacturing facilities through PBF-LB automation
  • Award-winning metal AM parts from the MPIF’s 2024 Design Excellence Awards
  • Performance of eddy currents for the in-situ detection of defects during PBF-LB metal AM

The world of metal AM to your inbox

Don't miss any new issue of Metal AM magazine, and get the latest industry news. Sign up to our twice weekly newsletter.

Sign up

Looking for AM machines, metal powders or part manufacturing services?

Discover suppliers of these and more in our comprehensive advertisers’ index and buyer’s guide, available in the back of Metal AM magazine.

  • AM machines
  • Process monitoring & calibration
  • Heat treatment & sintering
  • HIP systems & services
  • Pre- & post-processing technology
  • Powders, powder production and analysis
  • Part manufacturers
  • Consulting, training & market data
View online

Discover our magazine archive…

The free to access Metal Additive Manufacturing magazine archive offers unparalleled insight into the world of metal Additive Manufacturing from a commercial and technological perspective through:

  • Reports on visits to leading metal AM part manufacturers and industry suppliers
  • Articles on technology and application trends
  • Information on materials developments
  • Reviews of key technical presentations from the international conference circuit
  • International industry news

All past issues are available to download as free PDFs or view in your browser.

Browse the archive

Share via
Copy link
Powered by Social Snap