New system allows X-ray imaging of Electron Beam Powder Bed Fusion in real time

April 13, 2022

A team of UW-Madison mechanical engineers have developed a system that allows them to use synchrotron X-rays to view virtually all aspects of the PBF-EB process - including inside the part being built - in real time. PhD student Luis Izet Escano (pictured), whose advisor is Mechanical Engineering Assistant Professor Lianyi Chen, led the development of the system (Courtesy University of Wisconsin-Madison)
A team of UW-Madison mechanical engineers have developed a system that allows them to use synchrotron X-rays to view virtually all aspects of the PBF-EB process – including inside the part being built – in real time. PhD student Luis Izet Escano (pictured), whose advisor is Mechanical Engineering Assistant Professor Lianyi Chen, led the development of the system (Courtesy University of Wisconsin-Madison)

A team of mechanical engineers from the University of Wisconsin-Madison, USA, has developed what is reputedly the first system for concurrently using synchrotron X-ray imaging and diffraction, with complementary thermal and visible light imaging, to fully study the Electron Beam Powder Bed Fusion (PBF-EB) Additive Manufacturing process in real time.

Led by Mechanical Engineering Assistant Professor Lianyi Chen, the team from the University of Wisconsin-Madison created an integrated system which is seen as a major step forward in the understanding of the fundamental mechanisms underlying PBF-EB Additive Manufacturing, which has previously been limited to what is visible on the surface.

“For Electron Beam Powder Bed Fusion, right now, there’s pretty fast growth,” stated Chen. “It’s an important technology to make parts for aerospace – for example, for jet engines, with titanium aluminide. We can’t make these with any other 3D printing technology.”

The team completed its system in early January 2022 and is said to have already tested it successfully on the Advanced Photon Source, an ultra-bright, high-energy synchrotron X-ray user facility at Argonne National Laboratory, Lemont, Illinois.

“It is the first time we have the ability to see what happens beneath the surface – what are the defect formation mechanisms,” Chen added. “With a deeper understanding of the process, we can design better technology to move the process to a much higher level.”

Like an X-ray of the human body, the high-energy synchrotron X-ray enables the researchers to see how the material is behaving within the entire part as it’s being additively manufactured. A thermal camera on the researchers’ system allows them to study how the temperature evolves during the process, while a visible light camera enables them to study the part’s evolving surface morphology.

“It is quite fascinating,” stated Luis Izet Escano, the mechanical engineering PhD student in Chen’s group who led the development of the system. “With only one run on our machine, we are able to see several aspects of the printing process simultaneously.”

While the Electron Beam Powder Bed Fusion process seems straightforward, there are lots of physical phenomena at play. Today’s commercial Additive Manufacturing machines aren’t built for gathering such data from the synchrotron facility, meaning Escano and his colleagues had to design and fabricate their system from scratch.

For its design, the group drew on its experience building tools that allow them to use a synchrotron to study and improve Laser Beam Powder Bed Fusion (PBF-LB). The team also overcame several technical challenges associated with studying the Electron Beam Powder Bed Fusion process, including maintaining the high vacuum needed for the process, mitigating vibrations from the vacuum pump in their measurements, and manufacturing special viewports so that the synchrotron’s X-rays could pass through them effectively.

“Development and integration of the system has been a great challenge, as it requires expertise in multiple engineering areas,” continued Escano. “Now, the flexibility of our machine allows us to run experiments and collect data quite fast – and this will accelerate our research toward the fundamental understanding and perfection of this printing technology.”

More on this research is available here.

www.wisc.edu

In the latest issue of Metal AM magazine

Download PDF
 

Extensive AM industry news coverage, as well as the following exclusive deep-dive articles:

  • Aluminium Additive Manufacturing: How a new generation of alloys will fuel industry growth
  • Shaping a national Additive Manufacturing ecosystem: The strategic growth of metal AM in Türkiye
  • How metal Additive Manufacturing is transforming modern hydraulic systems
  • High-performance product development in the era of computational design: a case study with nTop and NASA
  • The Additive Manufacturing of record-breaking pure copper heatsinks for high-performance computing applications
  • The Additive Manufacturing of tool steels: how non-linear modelling enables precise hardness control

Join 40,000+ other AM professionals – follow us online

Don’t miss a thing – register for our newsletter

Don't miss any new issue of Metal AM magazine, and get the latest industry news. Sign up to our twice weekly newsletter.

Register now

Looking for AM machines, metal powders or part manufacturing services?

Discover suppliers of these and more in our comprehensive advertisers’ index and buyer’s guide, available in the back of Metal AM magazine.

  • AM machines
  • Process monitoring & calibration
  • Heat treatment & sintering
  • HIP systems & services
  • Pre- & post-processing technology
  • Powders, powder production and analysis
  • Part manufacturers
  • Consulting, training & market data
Find suppliers

About Metal Additive Manufacturing magazine

Metal AM magazine, published quarterly in digital and print formats, is read by a rapidly expanding international audience.

Our audience includes component manufacturers, end-users, materials and equipment suppliers, analysts, researchers and more.

In addition to providing extensive industry news coverage, Metal AM magazine is known for exclusive, in-depth articles and technical reports.

Our focus is the entire metal AM process from design to application.

Each issue is available as an easy-to-navigate digital edition and a high-quality print publication.

Discover our magazine archive…

The free to access Metal Additive Manufacturing magazine archive offers unparalleled insight into the world of metal Additive Manufacturing from a commercial and technological perspective through:

  • Reports on visits to leading metal AM part manufacturers and industry suppliers
  • Articles on technology and application trends
  • Information on materials developments
  • Reviews of key technical presentations from the international conference circuit
  • International industry news

All past issues are available to download as free PDFs or view in your browser.

Browse the archive

Share via
Copy link
Powered by Social Snap