What is 3D printing / Additive Manufacturing?

3D printing / Additive Manufacturing is a relatively new form of manufacturing, being approximately thirty years old. In its early phases, Additive Manufacturing was used for rapid prototyping and was quickly adopted for use with polymer materials. The toolless nature of the process meant that prototypes could be fabricated easily and checked for form, fit, and function, enabling rapid innovation in product development.

The earliest Additive Manufacturing machines, or 3D printers, were based on a process known as stereolithography, where thin layers of UV-sensitive resin were solidified with a laser. This process was commercialised in 1987 by 3D Systems, the first company to bring a commercial stereolithography machine to market.

Shortly thereafter, other polymer-based 3D printing technologies entered the market, the most notable being Fused Deposition Modelling (FDMÒ), a Material Extrusion (MEX)-based process introduced by Stratasys; and selective laser sintering, now known as Laser Beam Powder Bed Fusion (PBF-LB), a process commercialised by then-start-up DTM.

In the early 1990s, Additive Manufacturing processes were translated to metal processing, with the earliest metal 3D printing attempts using laser powder bed approaches with a metal powder as a feedstock and a CO2 laser for consolidation. However, the laser power was not sufficient to fully densify and consolidate metal powder, and, as such, the products produced had to be sintered and had low density values, making them unsuitable for large-scale industrial use.

Subscribe to our weekly newsletter
Sign up

Early pioneers of this process were the Fraunhofer Institute ILT in Aachen, whose technology became the basis of MTT Technologies (the forerunner of SLM Solutions and Renishaw AM). Another well-known pioneer is Hans Langer, the founder of Electro Optical Systems (now known as EOS GmbH), who was already active in polymeric-based systems and brought a metal system to market in 1994.

In 1998, Optomec was formed to commercialise an Additive Manufacturing technology named Laser Engineered Net Shaping (LENSÒ), developed at Sandia National Labs. The process was based on laser cladding, where metal powder is sprayed into the path of a laser. In a similar vein, wire-based cladding systems were extended to additive technology; however, this has been slower to develop commercially, with laser beam and wire-based Directed Energy Deposition (DED-LB/wire) and electric arc and wire-based DED (DED-Arc/wire) processes only more recently commercialised.

At a similar time, the Massachusetts Institute of Technology (MIT) had developed an AM technology involving the deposition of a binder onto a metal powder bed to produce a green part, followed by a debinding and infiltration process with an alternate metal of a lower melting point to produce a dense part. Extrude Hone secured a license for this technology, known as Binder Jetting, and in 1998 released its first machine, the ProMetal RTS-300. Extrude Hone would later become ExOne; as of November 2021, ExOne is now a wholly-owned subsidiary of Desktop Metal.

In 1997, Arcam AB was founded, and a system using an electron beam to melt metal powder in a powder bed (now known as Electron Beam Powder Bed Fusion [PBF-EB]) was developed in collaboration with researchers at the Chalmers University of Technology in Sweden. Patents were secured, importantly around the pre-sintering approach to reduce the static charge build-up on the powder bed. The company’s first machine, the S12 was released in 2002. Arcam (now a GE Additive company) has enjoyed a monopoly of the Electron Beam Powder Bed Fusion market until relatively recently.

Many more variations of the above technologies have been developed and commercialised since the earlier days of Additive Manufacturing development. There is now a proliferation of companies offering metal AM machines, materials, and software. Research has uncovered many unknowns that existed around the various processes, which has assisted in making metal AM processes more reliable and repeatable.

The quality of metal AM parts is now equivalent to or exceeding the quality of parts made via more traditional processes. Adoption by end-users, particularly in the aerospace and medical sectors, has been strong, with heavy investment in AM technology by these sectors enabling a rapid acceleration of industry growth from the 2010s onwards.

> Next page: Metal Additive Manufacturing processes

Download Metal AM magazine

In the latest issue of Metal AM magazine

Download PDF

Extensive AM industry news coverage, as well as the following exclusive deep-dive articles:

  • Metal powders in Additive Manufacturing: An exploration of sustainable production, usage and recycling
  • Inside Wayland Additive: How innovation in electron beam PBF is opening new markets for AM
  • An end-to-end production case study: Leveraging data-driven machine learning and autonomous process control in AM
  • Consolidation, competition, and the cost of certification: Insight from New York’s AM Strategies 2024
  • Scandium’s impact on the Additive Manufacturing of aluminium alloys
  • AM for medical implants: An analysis of the impact of powder reuse in Powder Bed Fusion

The world of metal AM to your inbox

Don't miss any new issue of Metal AM magazine, and get the latest industry news. Sign up to our twice weekly newsletter.

Sign up

Discover our magazine archive…

The free to access Metal Additive Manufacturing magazine archive offers unparalleled insight into the world of metal Additive Manufacturing from a commercial and technological perspective through:

  • Reports on visits to leading metal AM part manufacturers and industry suppliers
  • Articles on technology and application trends
  • Information on materials developments
  • Reviews of key technical presentations from the international conference circuit
  • International industry news

All past issues are available to download as free PDFs or view in your browser.

Browse the archive

Looking for AM machines, metal powders or part manufacturing services?

Discover suppliers of these and more in our comprehensive advertisers’ index and buyer’s guide, available in the back of Metal AM magazine.

  • AM machines
  • Process monitoring & calibration
  • Heat treatment & sintering
  • HIP systems & services
  • Pre- & post-processing technology
  • Powders, powder production and analysis
  • Part manufacturers
  • Consulting, training & market data
View online
Share via
Copy link
Powered by Social Snap