ASME and NIST update AM design language standard

June 10, 2022

These 3D models exhibit many of the unique degrees of freedom afforded by Additive Manufacturing such as producing parts with complex geometry and made of multiple materials (Reprinted from ASME Y14.46-2022, by permission of The American Society of Mechanical Engineers)
These 3D models exhibit many of the unique degrees of freedom afforded by Additive Manufacturing such as producing parts with complex geometry and made of multiple materials (Reprinted from ASME Y14.46-2022, by permission of The American Society of Mechanical Engineers)

The American Society of Mechanical Engineers (ASME) has published a new standard, Y14.46, based on research by the National Institute of Standards and Technology (NIST). The standard provides guidance on how to relay Additive Manufacturing specific considerations in design documents.

While traditional design language works well for many traditional manufacturing methods, it has not equipped engineers to produce clear and consistent design documents for Additive Manufacturing. This absence of standard methods of communication leaves room for information about additively manufactured designs to be lost in translation. This new standard is intended to help engineers communicate to manufacturers, product inspectors and others in various industries more effectively.

“The industry is in a digital transformation right now, moving away from physical 2D drawings, and Additive Manufacturing is one of the catalysts since it requires digital 3D models,” stated Fredric Constantino, an ASME project engineering adviser. “And if you’re working on one of those models, this standard will guide you in making it understandable to both 3D printers and other people.”

Paul Witherell, Mechanical Engineer, NIST, commented, “Additive Manufacturing has opened the door to a lot of unique design opportunities for engineers, but that freedom also creates challenges in communicating complex designs.”

The lack of a consensus on how to convey aspects of a product related to Additive Manufacturing’s distinct capabilities has muddled communication between different organisations and may have created a barrier to more widespread use of the technology.

ASME responded to this roadblock in 2014, forming a committee of several dozen engineers from industry, academia and the federal government. The group, co-led by Witherell through 2019, sought to produce a uniform approach for defining additively manufactured products.

“We weren’t looking for ad hoc solutions. We were looking for solutions that could be standardised and implemented by the community to address these challenges with communication,” Witherell added. “We already know we can make good parts with Additive Manufacturing. Now the goal is to make lots of parts with Additive Manufacturing, and this is a necessary step.”

With the new guidance, the group introduces concepts to address not only the nuances of Additive Manufacturing designs themselves, such as their potentially intricate internal geometry, but the particulars of the build process. Factors, including the orientation of a build and whether temporary structural supports are additively manufactured, can influence the strength, durability and other properties of the end product.

Since Additive Manufacturing machines need digital product information to be presented in a particular way, the guidance also includes a section on how to package 3D-model-based data so that it’s machine readable.

Designers are meant to reference the new standard along with several previously established standards, which cover basic design considerations that are relevant to a broad array of manufacturing methods.

If adopted by major players in manufacturing, the standard could improve communication for Additive Manufacturing, potentially making for a more sustainable and efficient manufacturing industry in the future. However, expanding the standard along the way will be key.

“Some of ASME’s other standards go ten years, twenty years without revision, but Additive Manufacturing is advancing so rapidly. We aim to keep pace by adding to this standard as time goes on,” Constantino said. “We expect it to evolve quickly.”

More information on the standard is available via the ASME’s Additive Manufacturing Collection and NIST’s Measurement Science for Additive Manufacturing Program.

www.asme.org

www.nist.gov

About Metal Additive Manufacturing magazine

Metal AM magazine, published quarterly in digital and print formats, is read by a rapidly expanding international audience.

Our audience includes component manufacturers, end-users, materials and equipment suppliers, analysts, researchers and more.

In addition to providing extensive industry news coverage, Metal AM magazine is known for exclusive, in-depth articles and technical reports.

Our focus is the entire metal AM process from design to application.

Each issue is available as an easy-to-navigate digital edition and a high-quality print publication.

In the latest issue of Metal AM magazine

Download PDF
 

Extensive AM industry news coverage, as well as the following exclusive deep-dive articles:

  • Fly-by-wire: How Additive Manufacturing took to the skies with Norsk Titanium
  • Dynamic beam shaping: Unlocking productivity for cost-effective Laser Beam Powder Bed Fusion
  • Enabling the fusion energy revolution: Mastering tungsten with PBF-EB Additive Manufacturing
  • Patents and Additive Manufacturing: What insights can mining PBF-EB data reveal about the industry and the technology?
  • Additive Manufacturing for Semiconductor Capital Equipment: Unlocking critical supply chains
  • Can Additive Manufacturing lower the carbon footprint of parts for the energy and maritime industries?
  • Inspect Additive Manufacturing, stop monitoring: Phase3D’s unit-based, in-process inspection solution for powder bed AM

The world of metal AM to your inbox

Don't miss any new issue of Metal AM magazine, and get the latest industry news. Sign up to our twice weekly newsletter.

Sign up

Looking for AM machines, metal powders or part manufacturing services?

Discover suppliers of these and more in our comprehensive advertisers’ index and buyer’s guide, available in the back of Metal AM magazine.

  • AM machines
  • Process monitoring & calibration
  • Heat treatment & sintering
  • HIP systems & services
  • Pre- & post-processing technology
  • Powders, powder production and analysis
  • Part manufacturers
  • Consulting, training & market data
View online

Discover our magazine archive…

The free to access Metal Additive Manufacturing magazine archive offers unparalleled insight into the world of metal Additive Manufacturing from a commercial and technological perspective through:

  • Reports on visits to leading metal AM part manufacturers and industry suppliers
  • Articles on technology and application trends
  • Information on materials developments
  • Reviews of key technical presentations from the international conference circuit
  • International industry news

All past issues are available to download as free PDFs or view in your browser.

Browse the archive

Share via
Copy link
Powered by Social Snap