3D Systems to collaborate with US Army and partners on virtual design and qualification project
February 11, 2021
3D Systems Corporation, Rock Hill, South Carolina, USA, has been selected by Raytheon Technologies, Waltham, Massachusetts, USA, and the Combat Capabilities Development Command (DEVCOM) Army Research Laboratory (ARL) as part of a research project titled ‘Research for Virtual Design and Qualification Process for Additively Manufactured Parts Optimised for Multi-Laser Machines’ awarded through the National Center for Manufacturing Sciences’ (NCMS) Advanced Manufacturing, Materials, and Processes (AMMP) programme.
3D Systems will work with Raytheon Technologies, the Penn State Applied Research Lab, Johns Hopkins University, and Identify3D to optimise a component relative to an army modernisation product, in order to maximise cooling and improve overall system performance.
The company explains that using Additive Manufacturing to address this need is a novel approach to the project that covers the entire part lifecycle including determining performance requirements, topologically optimising the design, manufacturing the part with attention to process monitoring for quality control, component performance validation, and data security.
Dr Brandon McWilliams, deputy programme manager at the CCDC ARL Weapons and Materials Directorate, stated, “The novel integration and concurrent design of structures, materials, and processes to create topologically optimised heat exchangers will enable disruptive advancements in munitions technology in support of multiple Army Modernisation Priorities.”
The size and complexity of this specific application is said to require a large frame AM machine. 3D Systems’ Application Innovation Group (AIG) designed a bespoke solution built on the company’s DMP Factory 500 solution for its best in class build volume (up to 500 x 500 x 500 mm) and its ability to produce parts spanning the entire build area without the need for stitching.
According to 3D Systems, the AIG has architected a custom configuration of the DMP Factory 500 that includes multiple modules to meet the unique requirements of this application. This advanced metal production system recently installed and commissioned at Penn State’s Center for Innovative Material Processing through Direct Digital Deposition (CIMP-3D) in December 2020, will be powered by the company’s 3DXpert® Additive Manufacturing software and LaserForm® materials.
This particular AM machine will be upgraded with some of the innovative technologies 3D Systems is working on for its 9-laser, 1 m x 1 m x 600 mm metal AM machine, including coaxial process monitoring and a high contrast single-lens reflex (SLR) camera within the build chamber that delivers a comprehensive view of the build in-situ. By using the same optical train included in the even larger frame, 9-laser system, the development activity on the DMP Factory 500 will be directly transferrable to the larger system. 3D Systems’ AIG application experts will continue to provide support throughout the project, including design guidance and training.
“Our work with the Army Research Laboratory is taking 3D Systems’ technology in new directions,” commented Chuck Hull, co-founder and Chief Technology Officer, 3D Systems. “We’re able to combine our metal 3D printing innovation with unique advancements in process modelling and monitoring, data security, and topology optimisation to deliver an unparalleled solution. ARL is strengthening its position as a leader in technology innovation to improve the capabilities of the warfighter and we look forward to continuing our collaboration with them.”
In addition to the thermal application, this team will also develop and evaluate new technology for process modelling and defect prediction, process monitoring and defect detection, topology optimisation, and cyber-physical security.
Ted Reutzel, associate research professor, Penn State’s Applied Research Lab, and director, Penn State’s CIMP-3D, noted, “The migration to larger build envelopes significantly expands the domain of Department of Defense applications addressable by Additive Manufacturing, yet it brings new challenges for process monitoring and quality control. The installation of this system at our Center will enable our team to leverage prior developments—funded by the US Navy, US Air Force, America Makes, and others—to help meet these challenges and rapidly integrate advanced flaw detection technologies.”
“The team is establishing a singular fluid architecture that encompasses design optimisation, sensing, machine learning, security, testing, and production,” stated Lisa Strama, president and CEO of NCMS, a cross-industry technology development consortium. “This will result in a prototype-based upon a holistic, machine agnostic, interconnected workflow. Leveraging the NCMS’ AMMP program and our trusted collaborative model, this project fully showcases the advancements made possible and efficiencies gained when bringing together OEMs, non-traditional defence contractors, and academia to address the full life-cycle of army relevant components.”
Chris Adkins, chief scientist, Identify3D, reported, “Identify3D is proud to be part of this program by providing end-to-end protection of the core manufacturing process from build file generation to DMP Factory 500 production and sensor data generation.”
“In addition to the DMP Factory 500 integration, Identify3D is developing an architecture to securely collect sensor data in the inspection and defection detection workflow as well as secure the design and defect prediction process to ultimately optimise the full digital workflow,” he concluded.