GE tests additive manufactured parts in demonstrator engine for Advanced Turboprop

November 2, 2016

November 2, 2016

GE tests AM parts in demonstrator engine for Advanced Turboprop

The new Cessna Denali will feature GE’s new Advanced Turboprop engine

General Electric has completed testing a demonstrator engine designed to validate additive manufactured parts in its Advanced Turboprop (ATP) system, which will power the new Cessna Denali single engine aircraft. The test engine contained 35% additive manufactured parts, which reduced the ATP’s weight by 5% while contributing to a 1% improvement in specific fuel consumption (SFC).

An additive CT7-2E1 technology demonstrator engine, dubbed the ‘a-CT7’ was designed, built and tested in 18 months, reducing more than 900 subtractive manufactured parts to 16 additive manufactured parts. The ATP engine architecture is derived from the CT7, allowing for part commonality between the two additive test programs.

The ATP will utilise more additive parts than any production engine in aviation history; 855 subtractive manufactured parts will be reduced to 12 additive parts. Additive components constitute 35% of the ATP’s total part count. The 12 additive ATP parts include: sumps, bearing housings, frames, exhaust case, combustor liner, heat exchangers and stationary flowpath components. By comparison, the CFM LEAP engine includes one additive part category, the fuel nozzle tip.

The same team of eight engineers responsible for designing the CFM LEAP additive fuel nozzle tip led the design effort for the 16 additive parts tested in the a-CT7. GE is building more additive hardware for additional a-CT7 tests (which will include an even greater number of additive parts than the first a-CT7) in Lynn, Massachusetts, USA. The additive components for a-CT7 and ATP tests are built at GE Aviation’s Additive Development Center (ADC) in Cincinnati, Ohio, USA. GE expects to run its first full ATP engine test by the end of 2017.

GE tests AM parts in demonstrator engine for Advanced Turboprop

GE has replaced 855 parts with 12 additive manufactured parts for its new ATP engine

“With subtractive manufactured parts and assemblies, you traditionally use bolts, welds or other interfaces to attach the parts together, which adds weight to the engine,” stated Gordon Follin, ATP Engineering GM at GE Aviation. “On the ATP, additive reduces weight by eliminating those attaching features while also optimising design of the parts.”

An additional benefit to the ATP is an expedited engine certification schedule. GE recently completed ATP combustor rig tests six months ahead of schedule due to the faster part production speeds allowed by Additive Manufacturing. For example, the combustor liners were printed in merely two days.

“A huge benefit of additive is expedited test schedules,” added Follin. “For a program like ATP, one of our big philosophical points of emphasis is getting hardware to test faster instead of spending too much time with models on a computer. By putting real hardware on test as quickly as we can, we can use the resultant data to help us design the next iteration for a better product, and we get that product much faster than if we were to use conventional manufacturing methods.”

The new 1,240 SHP-rated ATP is the first entry in GE’s new family of turboprop engines aimed at Business and General Aviation aircraft in the 1,000 – 1,600 SHP range. The ATP features an industry-best 16:1 overall pressure ratio (OPR), enabling the engine to achieve as much as 20% lower fuel burn and 10% higher cruise power compared to competitor offerings in the same size class with 4000 – 6000 hour maintenance time between overhauls and class-leading performance retention.

November 2, 2016

In the latest issue of Metal AM magazine

Download PDF

Extensive AM industry news coverage, as well as the following exclusive deep-dive articles:

  • Metal powders in Additive Manufacturing: An exploration of sustainable production, usage and recycling
  • Inside Wayland Additive: How innovation in electron beam PBF is opening new markets for AM
  • An end-to-end production case study: Leveraging data-driven machine learning and autonomous process control in AM
  • Consolidation, competition, and the cost of certification: Insight from New York’s AM Strategies 2024
  • Scandium’s impact on the Additive Manufacturing of aluminium alloys
  • AM for medical implants: An analysis of the impact of powder reuse in Powder Bed Fusion

The world of metal AM to your inbox

Don't miss any new issue of Metal AM magazine, and get the latest industry news. Sign up to our twice weekly newsletter.

Sign up

Discover our magazine archive…

The free to access Metal Additive Manufacturing magazine archive offers unparalleled insight into the world of metal Additive Manufacturing from a commercial and technological perspective through:

  • Reports on visits to leading metal AM part manufacturers and industry suppliers
  • Articles on technology and application trends
  • Information on materials developments
  • Reviews of key technical presentations from the international conference circuit
  • International industry news

All past issues are available to download as free PDFs or view in your browser.

Browse the archive

Looking for AM machines, metal powders or part manufacturing services?

Discover suppliers of these and more in our comprehensive advertisers’ index and buyer’s guide, available in the back of Metal AM magazine.

  • AM machines
  • Process monitoring & calibration
  • Heat treatment & sintering
  • HIP systems & services
  • Pre- & post-processing technology
  • Powders, powder production and analysis
  • Part manufacturers
  • Consulting, training & market data
View online
Share via
Copy link
Powered by Social Snap