Additive manufactured fuel pump tested for liquid methane NASA rocket in Mars project

News
May 5, 2016

May 5, 2016

Additive manufactured fuel pump tested for liquid methane NASA rocket in Mars project

Engineers prepare the additive manufactured turbopump for a test at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The turbopump was tested at full power, pumping 600 gallons of liquid methane per minute (Courtesy NASA)

NASA has reported that it recently tested a complex additive manufactured rocket engine turbopump with liquid methane, an ideal propellant for engines needed to power many types of spacecraft for NASA’s journey to Mars.

The turbopump consists of turbines that spin to drive the pump, which is used to supply fuel to the engine. During the full power test the turbines generated 600 horsepower and the fuel pump turned at over 36,000 revolutions per minute, delivering 600 gallons of semi-cryogenic liquid methane per minute, enough to fuel an engine producing over 22,500 pounds of thrust. Three other tests were completed at lower power levels.

“This is one of the most complex rocket parts NASA has ever tested with liquid methane, a propellant that would work well for fuelling Mars landers and other spacecraft,” stated Mary Beth Koelbl, the manager of the Propulsions Systems Department at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “Additive Manufacturing, or 3D printing, made it possible to quickly design, build and test two turbopumps with identical designs that worked well with both liquid methane and liquid hydrogen propellant.”

Additive manufactured fuel pump tested for liquid methane NASA rocket in Mars project

This rocket engine fuel pump has hundreds of partsincluding a turbine that spins at over 90,000 rpms. This turbopump was made with additive manufacturing and had 45% fewer parts than pumps made with traditional manufacturing (Courtesy NASA)

Hydrogen turbopump component testing and testing with a liquid oxygen/liquid hydrogen breadboard engine were completed in 2015. These tests along with manufacturing and testing of injectors and other rocket engine parts are paving the way for advancements in 3D printing of complex rocket engines and more efficient production of future spacecraft including methane-powered landers.

“Methane propulsion and Additive Manufacturing are key technologies for the future of exploration including NASA’s journey to Mars,” stated Graham Nelson, a Marshall propulsion engineer who helped with the testing. “We’re excited to complete testing that advances both these technologies at the same time and improves the capabilities of future missions.”

Liquid methane is cooled to -159°C whereas liquid hydrogen is cooled to -240°C. The higher temperature of liquid methane means it boils off more slowly and thus is easier to store for longer periods, a benefit for Mars missions. Also, technologies exist today to make it possible to manufacture methane rocket fuel from carbon dioxide, which is plentiful in the Mars atmosphere.

“By demonstrating the same turbopump can work with different fuels, we’ve shown that a common design would work for either engines fuelled by methane or hydrogen,” added Marty Calvert, the Marshall engineer who designed the turbopump. “Because liquid methane is much more dense than hydrogen, it requires the turbopump to spin at a different speed to deliver the same amount of mass flow to the engine.”

Testing ensures 3D printed parts operate successfully under conditions similar to those in landers, ascent vehicles and other space vehicles. All data on materials characterisation and performance are compiled in NASA’s Materials and Processes Technical Information System, called MAPTIS, which is available to approved users.

“Additive Manufacturing allowed us to build the turbopump with 45% fewer parts,” stated Nick Case, the Marshall propulsion engineer who led the testing. “This made it affordable to build two turbopumps, get them on the test stand quickly, and get results. Our next step will be to test the liquid methane turbopump with other 3-D printed engine components in a similar configuration to the liquid hydrogen tests completed last year.”

www.nasa.gov

News
May 5, 2016

In the latest issue of Metal AM magazine

Download PDF
 

Extensive AM industry news coverage, as well as the following exclusive deep-dive articles:

  • Metal powders in Additive Manufacturing: An exploration of sustainable production, usage and recycling
  • Inside Wayland Additive: How innovation in electron beam PBF is opening new markets for AM
  • An end-to-end production case study: Leveraging data-driven machine learning and autonomous process control in AM
  • Consolidation, competition, and the cost of certification: Insight from New York’s AM Strategies 2024
  • Scandium’s impact on the Additive Manufacturing of aluminium alloys
  • AM for medical implants: An analysis of the impact of powder reuse in Powder Bed Fusion

The world of metal AM to your inbox

Don't miss any new issue of Metal AM magazine, and get the latest industry news. Sign up to our twice weekly newsletter.

Sign up

Discover our magazine archive…

The free to access Metal Additive Manufacturing magazine archive offers unparalleled insight into the world of metal Additive Manufacturing from a commercial and technological perspective through:

  • Reports on visits to leading metal AM part manufacturers and industry suppliers
  • Articles on technology and application trends
  • Information on materials developments
  • Reviews of key technical presentations from the international conference circuit
  • International industry news

All past issues are available to download as free PDFs or view in your browser.

Browse the archive

Looking for AM machines, metal powders or part manufacturing services?

Discover suppliers of these and more in our comprehensive advertisers’ index and buyer’s guide, available in the back of Metal AM magazine.

  • AM machines
  • Process monitoring & calibration
  • Heat treatment & sintering
  • HIP systems & services
  • Pre- & post-processing technology
  • Powders, powder production and analysis
  • Part manufacturers
  • Consulting, training & market data
View online
Share via
Copy link
Powered by Social Snap