Researchers could finely tune high-temperature superalloys for specific properties

April 7, 2021

A piece of alloy is stress tested at KTH (Courtesy Levente Vitos)

Superalloys that withstand extremely high temperatures could soon be tuned even more finely for specific properties, such as mechanical strength, as a result of work undertaken at KTH Royal Institute of Technology in Stockholm, Sweden.

A phenomenon related to the invar effect – which enables magnetic materials such as nickel-iron (Ni-Fe) alloys to keep from expanding with increasing temperature – was reported to have been discovered in paramagnetic (weakly magnetised), high-temperature alloys.

Levente Vitos, Professor at KTH Royal Institute of Technology, states that the breakthrough research, which includes a general theory explaining the new invar effect, promises to advance the design of high-temperature alloys with exceptional mechanical stability. The article was published in the Proceedings of the National Academy of Sciences of the United States of America. Led by Vitos, the research team was comprised of KTH researchers Zhihua Dong, Wei Li and Stephan Schönecker.

Short for invariant, invar plasticity enables magnetically-disordered Ni-Fe alloys to show practically invariant deformation behaviour over a wide temperature range – making them ideal for turbines and other mechanical uses in extremely high temperatures.

The invar effect however has never been fully understood, and Vitos says that these new findings help explain the peculiar high-temperature properties of special alloys used in jet engines, such as nickel-base superalloys.

Invar has two known effects: thermal expansion and elasticity (the ability to spring back after bending, for instance). Because both of these effects are linked with the interplay between temperature and magnetic order, they are considered to be specific to magnetically-ordered alloys.

Using first-principles quantum mechanical modelling, the researchers identified how invariant plasticity also occurs in non-magnetic alloys, when a structural balance exists at the atomic level between cubic and hexagonal close-packed structures.

The new discovery emerges from a long-term collaboration with industry to find alternatives to carcinogenic cobalt in hard metals, such as cutting tools. Vitos says this finding broadens the palette of invar phenomena and material compositions, with clear implications for new applications.

“Our findings create a new platform for tailoring high-temperature properties of technologically relevant materials towards plastic stability at elevated temperatures,” added Vitos.

The research was supported by the Swedish Research Council (VR), the Swedish Foundation for Strategic Research (SSF), and the Swedish Foundation for International Cooperation in Research and Higher Education (STINT).

www.kth.se/en

Download the latest issue of Metal AM magazine

Our latest issue is now available to view online or download in PDF format.

As well as an extensive AM industry news section, this 168-page issue includes articles and reports on:

  • Metal Additive Manufacturing and the new Space Race: The inside track with Launcher and AMCM
  • Falcontech: The journey from materials engineering to large-scale metal Additive Manufacturing
  • Strategies for advancing the automation of metal Additive Manufacturing
  • Machine Learning and Additive Manufacturing: What does the future hold?
  • System 3R: Bridging critical gaps in the Additive Manufacturing workflow to enable serial production
  • Metal AM in South Africa: Research and commercial initiatives bring the benefit of AM to the African continent
  • CFD simulation for metal Additive Manufacturing: Applications in laser- and sinter-based processes
  • > More information

Latest news

    E-newsletter

    Sign up to our e-newsletter, sent weekly to AM professionals and end-users around the world. We'll also let you know each time a new issue of Metal AM magazine is available.

    Discover our magazine archive…

    The free to access Metal Additive Manufacturing magazine archive offers unparalleled insight into the world of metal Additive Manufacturing from a commercial and technological perspective through:
    • Reports on visits to leading metal AM part manufacturers and industry suppliers
    • Articles on technology and application trends
    • Information on materials developments
    • Reviews of key technical presentations from the international conference circuit
    • International industry news
    All past issues are available to download in PDF format, in either single page format or as double-page “spreads” for viewing on large monitors. All downloads are free of charge. Go to archive...

    Connect with us

    Visit our social media channels and sign up to our e-newsletter

    Copy link
    Powered by Social Snap