New devices produced for cardiovascular surgery using metal Additive Manufacturing

News
June 16, 2017

June 16, 2017

Sutrue Ltd, Essex, UK, and the Royal Brompton Hospital, London, UK, have adopted Additive Manufacturing for applications in cardiology by using the technology to develop both a tool which can be used to perform semi-automatic sutures in the operating theatre and a cardiac stabiliser for endoscopic heart operations. The suturing device features metal additively manufactured gears produced using the LaserCUSING process on an Mlab machine by Concept Laser.

Cardiovascular disease is the second most common cause of death in the UK, accounting for 27% of deaths. While drug treatments can deliver minor improvements to patients, in most cases, an operation must be performed. CAD and design development company Sutrue specialises in the development of medical devices for use in cardiology and has recently developed an instrument in which the entire gear mechanism is additively manufactured. The tool, which automatically passes any curved needle, with a suture, through the tissue of a patient, is inserted via a conventional endoscope during cardiovascular operations.

The gear mechanism was developed in collaboration between Sutrue and the Royal Brompton Hospital, and was manufactured by Coherent (formerly ES Technology), Concept Laser’s UK distributor, in Oxfordshire, UK. A precise analysis of the operating method was essential to allow suitable medical instruments to be developed, explained Alex Berry, Sutrue’s Founder: “AM makes it possible to produce geometries that cannot be achieved using traditional manufacturing methods. In addition, the parts have greater performance capacity or functional precision, or else they are extremely delicate or small. This is often precisely what the surgeon was previously lacking.”

 

New devices produced for cardiovascular surgery using metal Additive Manufacturing

Endoscopic suturing head showing additively manufactured gears (Courtesy Coherent)

 

According to Coherent, the LaserCUSING process offered by Concept Laser is particularly suitable for manufacturing delicate parts where a high level of surface quality is demanded. The system allows a rapid change of material without the risk of any contamination of powder materials. In this case, the machine technology from Concept Laser made it possible to produce the teeth of the gear mechanism, which are each 0.4 mm long.

“In addition to the restrictions on geometry, conventionally milled or cast parts have a few other drawbacks,” continued Berry. “It takes a great deal of time to get to the finished prototype. In addition, the costs are very high. In 3D printing, the parts are produced very quickly and at a fraction of the previous costs of prototyping. But the potential for bionic designs, reproducibility, miniaturisation and not least the reduction in the number of parts and outlay on assembly is also vast. If one looks at the full spectrum of optimising manufacturing and product design coupled with an increase in functionality, 3D printing is capable of revolutionising medical instruments.”

 

New devices produced for cardiovascular surgery using metal Additive Manufacturing

Additively manufactured heart stabiliser (Courtesy Coherent)

 

The role of a cardiac stabiliser is to keep the heart muscle still at the precise point where the surgeon wants to make an intervention. Richard Trimlett, Consultant at Royal Brompton Hospital, ascertained that this tool needed to be small, dismantlable and designed with exposed channels pre-assembly. Sutrue then developed a biocompatible prototype of the heart stabiliser, incorporating one plastic and one metal part. The finished component, which took three months to finalise, consists of a rod on which the U-shaped heart stabiliser is inserted, like a stamp. The body is metallic, while several plastic suction points allow the tool to affix to the heart muscle by means of a vacuum. To use the tool, the surgeon presses U-shaped head onto the operating site that they want to keep still.

“The solution is estimated to have cost only around £15,000 to develop,” stated Berry. “Comparable conventional developments used to cost upwards of a million pounds.” According to Royal Brompton Hospital, the tool also enables a quicker post-operative recovery for patients. While the average rehabilitation time for a patient is around six months following a conventional surgical intervention, Trimlett states that “Initial experience indicates that patients undergo a demonstrably gentler procedure and can recover after just three to four weeks.”

Trimlett and Berry have stated that their next aim is to use Additive Manufacturing in the production of mechanical pumps that perform the function of the heart, possibly by integrating electromagnetic functions for moving the pump.

www.sutrue.com

www.estechnology.co.uk

www.rbht.nhs.uk

News
June 16, 2017

About Metal Additive Manufacturing magazine

Metal AM magazine, published quarterly in digital and print formats, is read by a rapidly expanding international audience.

Our audience includes component manufacturers, end-users, materials and equipment suppliers, analysts, researchers and more.

In addition to providing extensive industry news coverage, Metal AM magazine is known for exclusive, in-depth articles and technical reports.

Our focus is the entire metal AM process from design to application.

Each issue is available as an easy-to-navigate digital edition and a high-quality print publication.

In the latest issue of Metal AM magazine

Download PDF
 

Extensive AM industry news coverage, as well as the following exclusive deep-dive articles:

  • BMW Group: Laying the foundations for the application of metal Additive Manufacturing in the automotive industry
  • Predicting the metal Additive Manufacturing market – and breaking the hype cycle
  • China’s thriving metal Additive Manufacturing industry: An outsider’s perspective
  • Enhancing the productivity of Additive Manufacturing facilities through PBF-LB automation
  • Award-winning metal AM parts from the MPIF’s 2024 Design Excellence Awards
  • Performance of eddy currents for the in-situ detection of defects during PBF-LB metal AM

The world of metal AM to your inbox

Don't miss any new issue of Metal AM magazine, and get the latest industry news. Sign up to our twice weekly newsletter.

Sign up

Looking for AM machines, metal powders or part manufacturing services?

Discover suppliers of these and more in our comprehensive advertisers’ index and buyer’s guide, available in the back of Metal AM magazine.

  • AM machines
  • Process monitoring & calibration
  • Heat treatment & sintering
  • HIP systems & services
  • Pre- & post-processing technology
  • Powders, powder production and analysis
  • Part manufacturers
  • Consulting, training & market data
View online

Discover our magazine archive…

The free to access Metal Additive Manufacturing magazine archive offers unparalleled insight into the world of metal Additive Manufacturing from a commercial and technological perspective through:

  • Reports on visits to leading metal AM part manufacturers and industry suppliers
  • Articles on technology and application trends
  • Information on materials developments
  • Reviews of key technical presentations from the international conference circuit
  • International industry news

All past issues are available to download as free PDFs or view in your browser.

Browse the archive

Share via
Copy link
Powered by Social Snap