Boeing 777X takes flight with reported 300 additively manufactured parts in each GE9X engine

ApplicationsNews
January 31, 2020

January 31, 2020

Boeing 777X takes flight with reported 300 additively manufactured parts in each GE9X engine
Boeing’s new 777X wide-body passenger jet’s maiden flight (Courtesy GE Aviation)

Boeing’s new 777X wide-body passenger jet underwent its maiden flight on January 25, taking to the skies powered by two GE9X engines from GE Aviation, said to be the largest and most powerful commercial jet engines ever built. According to Eric M Gatlin, Additive Manufacturing General Manager at GE Aviation, each of the engines contains around 300 additively manufactured components.

GE Aviation has been working on the GE9X since 2013, and prior to the maiden flight the company stated it had carried out seventy-two test flights of the new engine, totalling more than 400 hours, on its Boeing 747 flying testbed. To date, the GE9X programme has reportedly completed more than 4,100 hours of ground and air testing, as well as 6,500 cycles.

The GE9X’s fan casing is over 3.4 m (134 in) in diameter, as wide as the body of an entire Boeing 737, and houses parts made from the a wide range of materials, including lightweight and heat-resistant ceramic matrix composites, and components made by Additive Manufacturing.

Almost 300 AM parts are reported to be in each GE9X engine, including many that combine multiple parts into one component, as well as parts that cannot be made in any other way. AM parts are produced at GE’s Avio Aero facility in Cameri, Italy and GE’s Additive Technology Centre in West Chester, Ohio, USA, and are reported to include fuel nozzle tips, low-pressure turbine blades, heat exchangers and inducers.

The inducer, used to remove dust, sand and other debris in the engine, is one such part which is difficult to make without using AM, and has never been used inside a commercial GE jet engine before. “The inducer cannot be manufactured any other way, except by 3D printing,” stated Zach Studt, Senior Manufacturing Engineer at GE Aviation. “In this way, additive is unlocking performance of the engine. A different manufacturing process can deliver a better product. Going forward, most engines will probably come with some version of that inducer.”

The titanium aluminide (TiAl) blades on the low-pressure turbine of the GE9X are also produced by metal Additive Manufacturing. The TiAl blades are said to be roughly half the weight of traditional nickel-alloy turbine blades and are produced at Avio Aero using Arcam EBM systems.

GE Aviation is reported to be wrapping up certification testing for the GE9X and expects the engine to be certified later this year. It has built ten compliant engines, eight of which will go on flying test airplanes, plus two spares, for Boeing. Engines for the first three aircraft have been delivered and the balance will be in Seattle in the coming weeks. GE has received orders for more than 700 GE9X engines.

www.geaviation.com

www.ge.com/additive

www.boeing.com

ApplicationsNews
January 31, 2020

About Metal Additive Manufacturing magazine

Metal AM magazine, published quarterly in digital and print formats, is read by a rapidly expanding international audience.

Our audience includes component manufacturers, end-users, materials and equipment suppliers, analysts, researchers and more.

In addition to providing extensive industry news coverage, Metal AM magazine is known for exclusive, in-depth articles and technical reports.

Our focus is the entire metal AM process from design to application.

Each issue is available as an easy-to-navigate digital edition and a high-quality print publication.

In the latest issue of Metal AM magazine

Download PDF
 

Extensive AM industry news coverage, as well as the following exclusive deep-dive articles:

  • Fly-by-wire: How Additive Manufacturing took to the skies with Norsk Titanium
  • Dynamic beam shaping: Unlocking productivity for cost-effective Laser Beam Powder Bed Fusion
  • Enabling the fusion energy revolution: Mastering tungsten with PBF-EB Additive Manufacturing
  • Patents and Additive Manufacturing: What insights can mining PBF-EB data reveal about the industry and the technology?
  • Additive Manufacturing for Semiconductor Capital Equipment: Unlocking critical supply chains
  • Can Additive Manufacturing lower the carbon footprint of parts for the energy and maritime industries?
  • Inspect Additive Manufacturing, stop monitoring: Phase3D’s unit-based, in-process inspection solution for powder bed AM

The world of metal AM to your inbox

Don't miss any new issue of Metal AM magazine, and get the latest industry news. Sign up to our twice weekly newsletter.

Sign up

Looking for AM machines, metal powders or part manufacturing services?

Discover suppliers of these and more in our comprehensive advertisers’ index and buyer’s guide, available in the back of Metal AM magazine.

  • AM machines
  • Process monitoring & calibration
  • Heat treatment & sintering
  • HIP systems & services
  • Pre- & post-processing technology
  • Powders, powder production and analysis
  • Part manufacturers
  • Consulting, training & market data
View online

Discover our magazine archive…

The free to access Metal Additive Manufacturing magazine archive offers unparalleled insight into the world of metal Additive Manufacturing from a commercial and technological perspective through:

  • Reports on visits to leading metal AM part manufacturers and industry suppliers
  • Articles on technology and application trends
  • Information on materials developments
  • Reviews of key technical presentations from the international conference circuit
  • International industry news

All past issues are available to download as free PDFs or view in your browser.

Browse the archive

Share via
Copy link
Powered by Social Snap